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One of the consequences of sedimentation in colloidal aggregation is the stratification of the system in the
sense that, after a sufficiently long elapsed time, the large clusters lie preferentially at the bottom zones of the
confinement prism, and the structural and dynamical quantities describing the aggregates depend on the depth
at which they are measured. A few years ago a computer simulation using particles for colloidal aggregation
coupled with sedimentation was proposed by the author �A. E. González, Phys. Rev. Lett. 86, 1243 �2001��. In
that simulation, due to computational limitations, the mentioned quantities were averaged over all clusters in
the prism, independently of the depth at which they were located, in order to have good statistics for the
evaluation of the cluster fractal dimension and the cluster size distribution function. In this work we present a
computer simulation using particles of colloidal aggregation coupled with sedimentation, for which the clusters
in the simulation box represent those clusters inside a layer at a fixed depth and of arbitrary thickness in the
prism. It would then be possible to compare the results with an eventual validation experiment, in which an
aggregating sample is sipped out with a pipette at a fixed depth in the prism and subjected to further studies,
or with a light scattering study in which the laser beam is focused at a fixed depth in the system. We confirm
the acceleration of the aggregation rate, followed by a slowing down, compared with an aggregating system
driven purely by diffusion �DLCA�. In the present system, the large clusters when drifting downwards sweep
smaller ones, which in turn occlude the holes and cavities of these large clusters, increasing in this way their
compacticity. We also confirm that �i� in some cases of sedimentation strengths and layer depths, the mean
width �perpendicular to the gravitational field direction� and the mean height of the large settling clusters scale
with the size as a power law, with the same scaling power, in some range of cluster sizes. This leads to
self-similar clusters with an appreciably higher fractal dimension �df� than the df of DLCA clusters, a case that
we called the “sweeping scaling regime” in earlier works. However, the present system is much richer than
DLCA in that �ii� there are some other cases for which the parallel and perpendicular scaling powers differ,
leading to anisotropic self-affine clusters. �iii� There are further cases for which only the mean width or the
mean height scale as a power law, leading again to anisotropic clusters. Finally, �iv� there are still some cases
for which neither the mean width nor mean height scale as a power law with the size. In the last �ii�, �iii�, and
�iv� cases the large settling clusters are anisotropic and non-self-similar, and a fractal dimension cannot be
defined for them, as found recently by some other authors for case �iii�; however, their “compacticity” should
be greater than that for DLCA clusters, in a yet undefined way.
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I. INTRODUCTION

Aggregation phenomena have been studied since the be-
ginning of the last century �1,2�. In more recent years, after
the proposal of a single-aggregate diffusive model by Witten
and Sander �3�, and more adequate for our purpose of col-
loidal aggregation, after the development of a diffusive
model for cluster aggregation, simultaneously made by
Meakin �4� and by Kolb et al. �5�, the number of works
dealing with the aggregation of particles has increased con-
siderably. Aggregation of particles and clusters is still of
great interest due to the number of applications it has in
chemical engineering, materials science, biology, and atmo-
spheric research �6,7�. Notwithstanding this fact, almost all
the research in colloidal aggregation has been done neglect-
ing the sedimentation that takes place when the large aggre-
gates are pulled down by the gravitational force, in those
cases for which there is an appreciable difference between
the density of the colloidal particles and the density of the

solvent. It has been only in the past 10–15 years �8–22� that
researchers have paid increasing attention to such phenom-
enon, when the aggregation of diffusing clusters is coupled
with the sedimentation experienced preferentially by the
large aggregates.

The coupling between cluster diffusion and sedimentation
in colloidal aggregation leads to much richer, nontrivial phe-
nomena, that abound in many natural and industrial pro-
cesses, than the much more studied colloidal aggregation
problem driven purely by diffusion. Among the many ex-
amples we can cite the clearing or clarifying of liquids, the
settling of bacteria clusters in quiet water, the aggregation
and deposition of asphaltenes in crude oil, and a number of
precipitation techniques employed by the chemical industry.
With the addition of salts or flocculants, which screen the
electrostatic repulsion between the particles or which estab-
lish bridges between them, it is induced the aggregation of
the particles into clusters, which themselves collide with
other clusters, stick together and become larger. Initially, the
aggregates are small and essentially move by diffusion. As
the aggregation proceeds, the settling velocity of the large
aggregates becomes significant, and a mechanism for the
movement of these large clusters appears. As the sedimenta-*Electronic address: agus@fis.unam.mx
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tion velocity of the small aggregates is lower than that for the
larger ones, these large clusters catch up with the smaller
ones, actually sweeping them and becoming in the process
larger and larger. As a result, the hitting rate between aggre-
gates increases, which leads to an acceleration of the aggre-
gation kinetics. However, as the colloidal matter in the bulk
becomes more and more scarce, due to the deposition of the
large aggregates on the bottom of the sample, the aggrega-
tion kinetics eventually slows down, as we will see below. In
the final state and for the nongelling cases �low concentra-
tions�, the system is composed of a tenuous sediment on the
bottom and a clear fluid above.

Historically, the irreversible aggregation processes where
neither sedimentation effects nor cluster breakup occur have
been classified depending on the sticking probability after
collisions �23–26�. When this probability is one, the particles
and clusters diffuse freely and aggregate at the first contact
between them. The aggregation is then termed diffusion-
limited colloidal aggregation �DLCA�. If, on the other hand,
a large number of encounters are needed to generate a new
cluster, the aggregation is called reaction-limited colloidal
aggregation �RLCA�. Our current knowledge in three dimen-
sions �27,28� of the DLCA process is as follows. �a� The
fractal dimension df of the clusters in the dilute limit is about
1.80. However, it increases from this value as a square root
of the particle concentration. �b� The number-average
�Sn�t���sNs�t�s /�sNs�t�� and weight-average �Sw�t�
��sNs�t�s2 /�sNs�t�s� cluster sizes grow linearly with time

in the dilute limit Sn�t�� tz� and Sw�t�� tz, with z=z�=1.
Here Ns�t� is the cluster size distribution function that gives
the number of clusters with s particles at time t. Once again,
the exponents z and z� increase from one as a square root of
the particle concentration. �c� The cluster size distribution
Ns�t� is bell shaped in the late stages of the aggregation pro-
cess.

Experimentally, this new problem of aggregation coupled
with sedimentation has been studied more extensively by
Allain and collaborators �9–11,13,14,16�, who found an in-
crease in the df of the large, settling aggregates �reaching
values as high as 2.2� �10,11�. They attributed this increase in
the df of the large clusters to a restructuring mechanism, due
to the hydrodynamic stresses felt by their branches when
they drift downwards. They also found the large settling ag-
gregates to be nonrotating. See Refs. �17,21� for a possible
explanation of this behavior.

On the simulational side and in our first works �15,17,21�
that consider both sedimentation and deposition �through a
rarefaction of colloidal matter in the bulk�, due to computa-
tional limitations, the structural �df� and dynamical quantities
�basically Sw�t�� were obtained from averages over the clus-
ters inside the aggregating prism, independent of their verti-
cal position. This assumption was necessary in order to have
good statistics for the evaluation of the averages of highly
fluctuating quantities. However, the colloidal aggregation
problem coupled with sedimentation is not homogeneous on
the vertical direction. In Fig. 1 we are reproducing Fig. 1 of
Chap. III of Ref. �9� �the horizontal straight lines were added
by the present author�. In their system, the Calcium Carbon-
ate spherical colloidal particles were of a diameter of

0.07 �m; therefore, they cannot be optically seen unaggre-
gated, and even the smallest points shown are actually clus-
ters of many particles. The confinement prism was 1 mm in
thickness, 10 mm wide, and of a height of 50 mm, while the
volume fraction � was set to the value of 0.001. The prism
was illuminated from behind in such a way that what we
actually see are the shadows of the clusters. We can clearly
see in this figure that, for a sufficiently long time, the large
clusters lie preferentially deeper than the smaller ones, which
leads to a stratification of the system, as mentioned. More-
over, in each of the seven sublayers shown, we can also see
that the average cluster size increases with time and peaks at
a certain time, diminishing afterwards. The deeper the layer
is, the longer the time it takes to peak and the higher the
value at which it peaks.

In Refs. �18,19� the authors divided the aggregating prism
in three nonoverlapping regions of equal height: top, middle,
and bottom, in an effort to consider the dependence on the z
coordinate of the aggregating quantities, and performed the
much needed averages over all clusters in each of the re-
gions. Unfortunately, their aggregation prism was not of a
height big enough, in order to see a substantial increase of
the clusters df, as we have shown �21�. More recently, in Ref.
�22�, the authors considered a two-dimensional lattice model
for aggregation coupled with sedimentation; that is, they
considered the z coordinate on the direction of the field and
only one horizontal coordinate. They found that, for some
cases of high sedimentation strengths and within some range
of sizes, the mean width of the large settling clusters scaled
as a power law with the cluster size while the mean height
did not, leading to anisotropic clusters for which a fractal
dimension could not be defined. To proceed further in this
problem, what we actually need is an algorithm capable of
proportioning the average aggregation quantities at a fixed
depth in the prism, and consider a good number of cases of
sedimentation strengths and layer depths. In Ref. �29� such
an algorithm was presented in the form of a letter in which,
by the nature of its size, it was not possible to show all the
different cases of sedimentation strengths and depths, that
lead to different behaviors in this problem. The purpose of
the present article is to fill this gap, and consider in detail a
number of interesting cases of sedimentation strengths and
depths, with such algorithm.

The organization of this article is as follows. In Sec. II we
give an explicit description of the model and algorithm used

FIG. 1. The states at different times of a calcium carbonate
aggregating suspension of spherical particles, for the following
times: �a� 5 min 20 s, �b� 6 min 20 s, �c� 6 min 40 s, �d� 7 min, �e�
7 min 20 s, �f� 7 min 40 s, and �g� 8 min �from Ref. �9��.
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in the simulations, and also set the values of the parameters
considered. The dynamics of the aggregation is studied in
Sec. III, where we first present in Sec. III A the weight-
average cluster size as a function of time. We will see that
this quantity behaves in accordance to what we saw in Fig. 1.
The time evolution of the number of clusters in the different
layers �Nc�t�� will be shown in Sec. III B, where the slowing
down after the speeding up of the aggregation will become
evident. To end up with the dynamics, the evolution of the
particle volume fraction � in the layers will be presented in
Sec. III C. The cluster structure for all cases considered will
be studied in Sec. IV. In Sec. IV A we first present those
cases for which the large settling clusters are still isotropic,
the mean width and the mean height scaling as a power law
with the cluster size �N�, with the same scaling power and
within a certain range in sizes. It is therefore possible to
define a cluster fractal dimension, which results appreciably
higher than the DLCA df. Those cases correspond to what we
called the “sweeping scaling regime” in earlier works
�21,29�. In Sec. IV B we will present a case for which the
mean width and the mean height of the large settling clusters
again scale as power laws with N, but with different scaling
powers; this leads to anisotropic, self-affine clusters, for
which it is not possible to define a df. The cases for which
the mean height of the big drifting clusters scales as a power
law with N, while the mean width does not, and vice versa,
with no possibility to define a cluster df, are considered in
Sec. IV C. In Sec. IV D are considered those cases for which
a settling clusters regime disappears, leaving over only a
quasi-DLCA regime, which occurs generally for very shal-
low depths and/or for not so shallow depths but with a low
sedimentation strength. In such cases, the large clusters do
not have the possibility to do a substantial sweeping of the
small clusters. The “quasi” means that the large clusters still
do some sweeping, increasing in this way a little bit their df
from the DLCA value. To finish the structural studies, in Sec.
IV E are shown the cases of very high sedimentation
strengths, for which the clusters become very soon aniso-
tropic. In those cases, the scaling as a power law of the mean
width and mean height with N is lost, even for small clusters,
marking the disappearance also of the quasi-DLCA regime.
Finally, in Sec. V the paper is ended with some discussions
and conclusions of the results shown.

II. THE MODEL

Let us consider the sedimentation velocity vs experienced
by a cluster of N spherical particles of radius a and mass m0:

vs =
m0�1 − �/�0�gN

f
=

m0�1 − �/�0�g
kBT

DN , �1�

where �0 is the particle density, � is that of the suspension
fluid, f =6��Rg is the cluster’s friction coefficient, D�= kBT

f
�

is its diffusion coefficient, Rg is its radius of gyration, � is
the solvent viscosity, and T is the temperature. Note that
rigorously we should have written f =6��RH, where RH is
the hydrodynamic radius of the cluster, which was shown
experimentally to be proportional to the radius of gyration

�30�. Since in all the formulas for moving the clusters in the
algorithm, including the comparison of the two Monte Carlo
�MC� step times �see below�, we obtain the ratio of two radii
�Rg min/Rg or Rg /Rg max�, the constants of proportionality
cancel out allowing us to use the Rg in the definition of the
friction coefficient. This Rg can be calculated directly in the
simulations for each cluster. Let t0 be the time for which the
cluster diffuses a particle diameter �d=2a�, that is, t0
=2a2 /3D. During the same time, the cluster drifts a distance
ds=vst0= 1

3PeNd, where Pe�m0�1−� /�0�ga /kBT is the Pe-
clet number of the individual colloidal particles in the fluid.
The Peclet number gives the sedimentation strength felt by
the particles, being a number much smaller than one for most
colloidal systems with a size generally smaller than 1 �m. It
is in fact not difficult to show that if the colloidal particles
are 1 �m in diameter 1−� /�0 is less than but of the order of
unity, and T is room temperature, Pe is of the order of unity.
However, if the diameter is 0.1 �m such quantity is of the
order of 10−4, while if the diameter is 10 �m, Pe goes as
high as 104. Therefore, 1 �m marks the transition between
diffusive and drifting behavior for individual particles, with
density different from that of the medium.

The main difficulty with the present aggregation problem
is to simulate systems large enough, in the shape of a prism,
with a height big enough in order to study the big depths �in
units of the particle diameter� that are considered in the ex-
perimental systems. Moreover, the width of the prism also
has to be sufficiently large to allow for the formation of the
big clusters, that are preferentially experiencing the sedimen-
tation due to gravity. The simulation of such a system would
be computationally unmanageable due to its enormous size.
To overcome this difficulty, we consider two cubic lattices of
lattice spacing d �the diameter of the particles�. The first one
has the shape of a square prism of height H and variable
lateral size, with periodic boundary conditions on the x and y
directions, that mimics the actual experimental prism. The
second one has the shape of a cube of lateral size L, with
periodic boundary conditions on the three spatial directions,
that represents a layer of the square prism centered at the
integer depth Z measured from the top of the prism, and of
thickness � which is taken in multiples of two �see Fig. 2�.
Now, periodic boundary conditions applied in all three spa-
tial directions imply no spatial variations inside the cube.
This is the reason why the thickness � will be chosen much
smaller than the depth Z at which we are focusing. The varia-
tions with the depth are considered by the different taking
out probabilities, which depend on the depth Z and the thick-
ness �, as we will see below. Note how this is different from
the previous algorithm �15,17,21�, in that the lattice with the
shape of a cube there represented the whole prism of height
H. Inside such lattices we have clusters made of nearest-
neighbor lattice cells that are diffusing randomly in the six
spatial directions, sedimenting downwards and aggregating
after encounters �attempts to overlap�. The simulations are
actually performed in the lattice with the shape of a cube,
where as is usual with the periodic boundary conditions, if a
cluster leaves the cube through one of the boundaries it en-
ters from the opposite side. We would like to consider now,
for each cluster, an integer quantity Zs which is measured in
the prism as the vertical distance from the uppermost initial
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particle that will eventually belong to the given cluster, to the
center of this cluster — defined at a suitable cell — at the
present position in the prism. At the initial time there are
only single particles randomly positioned which, of course,
have Zs=0. To calculate this quantity in the simulational cu-
bic box, whenever a cluster moves in the z direction a lattice
spacing d, the quantity Zs is updated, which furnishes us with
the total distance in units of d that the cluster has moved
downwards �taking into account the movement of all its an-
cestors; i.e., the largest of the two quantities Zs of the two
colliding clusters is generally but not always inherited to the
new formed cluster after a merging. A technical detail: as the
Zs after a merging is measured up to the center of the new
formed cluster, it is possible that sometimes the cluster with
the smaller Zs, plus the vertical distance from its center to the
center of the new cluster, would produce the largest value of
the Zs for the new formed cluster. In this case this is the Zs
that we take for the new cluster�.

Every time a cluster is picked at each MC step we check
whether it diffuses and/or sediments downwards a lattice
spacing �see below�. In the last case, to simulate the clusters
inside the above mentioned layer of thickness � of the prism,
of all the Z+ �

2 −Zs�1 possible layers of unit thickness
where the center of this cluster can be, only at the lowest
layer — with the position Z+ �

2 — would be taken out of the
layer of thickness � by a sedimentation step, while if it is at
the layer at Z− �

2 the sedimentation step would take it inside.
Therefore, if Zs has not grown enough for such cluster such
that Z− �

2 −Zs�1, it is not taken out of the box, assuming
that it has the same probability to be on either of those two
layers of unit thickness of the prism. On the other hand, if
Z− �

2 −Zs�0, the cluster cannot be at the position Z− �
2 and

is therefore taken out of the box with probability 1 / �Z+ �
2

−Zs�. In this way we are simulating the depletion of colloidal
matter inside the different layers in the aggregation prism,
due to sedimentation.

We pick the MC step time to not allow a cluster to move
more than one lattice spacing. Define �tdif�d2 /6Dmax as the
time taken by the most mobile cluster to diffuse one lattice
spacing. Also, let �tdrif�d /vs

max be the time taken by the
largest cluster to sediment downwards one lattice spacing.
The algorithm is as follows.

�a� If �tdrif	�tdif then we have the following.
�1� pick a cluster in a cyclic way. That is, the clusters are

numbered and, after having chosen a cluster, the next cluster
to choose will be the following in the list, given that sedi-
mentation is a deterministic process.

�2� The time is increased by �tdrif /Nc�t�, where the divi-
sion by Nc�t� comes from the fact that after a cycle, when all
the clusters have been picked once �assuming that no merg-
ing took place�, the time increase is �tdrif.

�3� The quantity �tdrif vs /d is calculated and the result is
added to a real variable associated to that cluster, that we
called Zsed. The initial values of the variables Zsed of all the
clusters are equal to zero. If the sum is greater than one, the
cluster is moved downward one lattice spacing and the new
value of the variable becomes the remainder of the sum
modulo one; the variable Zs is consequently updated to its
previous value plus one and the cluster is taken out of the
box with probability 1 / �Z+ �

2 −Zs�, only if Z− �
2 −Zs�0. We

then go back to the starting situation to calculate �tdif and
�tdrif.

�4� If the cluster is moved but not taken out, we check for
overlapping with other clusters, in which case the moved
cluster is taken back to its original position and the overlap-
ping clusters are merged �which implies a sticking probabil-
ity equal to 1�. We then go back to the starting situation to
calculate �tdif and �tdrif.

�5� If the cluster movement does not lead to overlap,
it now moves one lattice spacing in a random direction,
with probability ��tdrif /�tdif��D /Dmax�. The factor �tdrif /�tdif

�	1� modifies the usual diffusion probability of a cluster
�4,5�, due to a MC step time smaller than �tdif. If it moves
along the z direction, Zs is consequently updated. We now
check for overlapping, etc., as in point �4�.

�6� If the cluster movement does not lead to overlap, the
procedure is continued at point �1�.

�b� If, on the other hand, �tdif��tdrif we follow the same
procedure �a�, with the difference that everywhere we find
�tdrif in a formula, it is replaced by �tdif.

The volume fraction was fixed at the value �=0.001. We
considered four depths: Z=500, 5000, 50 000, and 500 000,
measured in terms of the diameter, and one single �=100.
For each of those depths, five Peclet numbers were consid-
ered Pe=0.0001, 0.001, 0.01, 0.1, and 1.0. In turn, for each
Peclet number, a series of 10 simulations of 274 625 particles
were made �corresponding to a box size of 650 diameters�, in
order to have enough statistics to evaluate the structural and
dynamical quantities.

FIG. 2. A schematic representation of the square lattice prism:
Each of the squares represents a layer of unit thickness in the prism.
Here we are describing a case for which the depth of the analyzed
layer is Z=11, while the thickness is �=6. If the center of any
cluster is at the cell number 8, labeled with the letter E, it will enter
into the layer after a sedimentation step, while if it is at the cell
number 14, labeled with the letter L, it will leave the layer after
such step.
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III. DYNAMICS

A. The evolution of Sw„t… in the layers

In Fig. 3 are shown the weight-average cluster sizes as a
function of time Sw�t� for the Peclet numbers �a� 1.0, �b� 0.1,
�c� 0.01, and �d� 0.001. As we can see in the figures, Sw
increases with time, peaks at a certain time, and diminishes
afterwards, a behavior that is in accordance to what we saw
qualitatively in Fig. 1. We also note in all four figures that
the deeper the layer we are considering, the longer the time it
takes to peak and the higher the value at which it peaks,
again in correspondance with Fig. 1. The peak in the Sw
indicates that for each Peclet number and for each layer there
is a typical maximum cluster size above which no aggregates
can be found, where by typical we mean the order of mag-
nitude. This typical maximum size increases with the deep-
ness of the layer, for a given Peclet number. In Figs. 3�c� and
3�d� we present a phenomenon that does not appear in the
experiments, namely, that for low Peclet numbers and very
deep layers, some clusters become so big �on the order of 105

particles� that they span our finite cubic box of lateral dimen-
sion of 650, and the system gels. Therefore, the simulations
had to be stopped at the gel point. That is why, in curve d of
Fig. 3�c�, and in curves c and d of Fig. 3�d�, the decrease of
Sw does not appear after the peak but only the increase. This
did not occur in the experimental system because of two
possible reasons: �i� even the shortest side of their parallel-
epiped �thickness� was of �14 300 particle diameters in size
and �ii� there is a limiting size Rmax above which the aggre-
gates do not grow �11� due to cluster fragmentation, which is
not considered in the present model. However, their value of
Rmax�0.5 mm �11� makes us believe that it is the finite size
of our cubic lattice the one responsible for gelation, because
our clusters are well below their Rmax in units of the particle
diameter.

We confirmed the speeding up of the aggregation rate as
compared with the DLCA case, now for a fixed depth when
this depth is big enough, due to the increasing pace at which
the big clusters drift downwards, catching up more and more
small clusters below them and increasing in this way the
hitting rate �15,17,21�. The speeding up is illustrated in Fig.
4, where we are now plotting again Sw�t� such that all the
curves for a given depth and the different Pe’s are shown in
the same graph. In Fig. 4�a� we show the Sw curves for the
Z=500 layer, while in Figs. 4�b�–4�d� are shown the curves
for the Z=5000, 50 000, and 500 000 layers, respectively. As
can be seen in Figs. 4�b�–4�d�, the curves for all Peclet num-
bers different from zero depart from the DLCA curve, in-
creasing at a higher rate. The higher the Peclet number con-
sidered, the sooner the curve starts to depart. Note again the
existence of some curves with no maximum because they
were cut at the gel point, which occurred generally for low
Pe’s and big depths. More precisely, gelation occurred for
Z=5000 with Pe=0.0001; for Z=50 000 with Pe=0.0001 and
0.001; and finally, for Z=500 000 with Pe=0.0001, 0.001,
and 0.01. For the very shallow depth of 500, there was no
increase of the Sw curves above the DLCA one, except for a
very slight increase of the curve for Pe=1. This indicates that
for such depth the clusters did not have the opportunity to do

a substantial sweeping in that distance, therefore preventing
the acceleration of the kinetics.

For times before the Sw reaches its maximum, there is
essentially no depletion of colloidal mass in the layers, as we

FIG. 3. A log-log plot of the time evolution of the weight-
average cluster size Sw for the Peclet numbers �a� Pe=1, �b� Pe

=0.1, �c� Pe=0.01, and �d� Pe=0.001. In all four figures the labels
of each of the curves a, b, c, and d correspond to the following
depths: 500, 5000, 50 000, and 500 000, respectively.
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will see below, because the departing of clusters through the
boundary below is counterbalanced by the arrival of clusters
through the boundary above. However, as soon as the Sw
reaches its maximum and it is possible to find typical maxi-
mum size aggregates in a given layer, no counterbalance

would occur when these typical maximum size clusters leave
the layer from below, because it is not possible to find ag-
gregates of that size in the layers above. The layer then starts
to become rapidly depleted of these big clusters. Afterwards,
as the time proceeds, the layer is depleted now of smaller
clusters, for the same reason. All this forces the Sw to dimin-
ish rapidly, as seen in Figs. 3 and 4. Due to both effects: �i�
the absence of large sweeping clusters and �ii� the rarefaction
of colloidal matter in a given layer, there is a reduction of the
hitting rate, with the consequent slowing down of the kinet-
ics.

B. The evolution of Nc„t… in the layers

The slowing down of the aggregation rate after the speed-
ing up is also seen in the curves for the number of clusters in
the layers as a function of time Nc�t�. Note that in order to
start with the same number of initial particles as we are con-
sidering here, and due to the thickness of our layers equal to
100 lattice spacings, the transversal area of the prism should
be of 2 746 250, in order for the volume of the layer to be
equal to that of the cubic box: 6503. This corresponds to a
square prism of lateral size of about 1657 lattice spacings.

In Fig. 5 we plot the number of clusters in the layers as a
function of time, Nc�t�. In Fig. 5�a� are shown the Nc curves
for the Z=500 layer, while in Figs. 5�b�–5�d� are shown the
curves for the Z=5000, Z=50 000, and Z=500 000 layers,
respectively. In each of the figures, the curves for Pe=1.0,
0.1, 0.01, 0.001, 0.0001, and 0.0 are labeled with the letters
a, b, c, d, e, and f, respectively. As we can see in all four
figures, there is a higher decrease in the number of clusters as
a function of time for all Pe’s�0, as compared with the case
Pe=0 �DLCA simulation�. The higher the Peclet number, the
sooner the curve starts to depart from the DLCA curve. This
higher decrease comes again from the higher hitting and ag-
gregation rate when the big settling clusters are sweeping the
small clusters and single particles that find below them.
However, for not so shallow depths as in Figs. 5�b�–5�d�, and
for the cases where no gelation takes place, we can clearly
see another phenomenon taking place, namely, that the de-
crease slows down, which is signaled by the wiggles in the
Nc�t� curves. As mentioned, the slowing down in the de-
crease of Nc�t� is due to lower hitting and aggregation rates
between clusters. Nevertheless, after this slowing down, the
decrease of Nc�t� starts up again at a higher rate, this time
coming mainly from the rarefaction of colloidal mass �clus-
ters� in the layer. The absence of wiggles in the layer at Z
=500 and for high Pe’s is probably due to the fact that the
layer is rapidly depleted of colloidal matter in a very short
time, and we cannot even talk about hitting and aggregation
rates.

C. The evolution of the particle density in the layers

In Fig. 6 we show the volume fraction � as a function of
time in the layers for �a� Z=500, �b� Z=5000, �c� Z
=50 000, and �d� Z=500 000, and for all the Peclet numbers
studied. In view of the way that the depletion of colloidal
mass in the layers was calculated, this �layer�t� is actually an

FIG. 4. A log-log plot of the time evolution of the weight-
average cluster size Sw for the layers at �a� Z=500, �b� Z=5000, �c�
Z=50 000, and �d� Z=500 000. In all four figures the labels of each
of the curves a, b, c, d, e, and f correspond to the following Peclet
numbers: 1.0, 0.1, 0.01, 0.001, 0.0001, and 0.0 �DLCA simulation�,
respectively.
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average density �which is in fact what we want�, absent of
fluctuations coming from the Brownian motion of the clus-
ters. As we can see, all the curves start at the initial value
�=0.001 and continue with that value for a certain elapsed
time, after which they decrease rapidly. The higher the Peclet

number, the sooner the curve starts to depart from the initial
value. The main reason for showing these plots is to corrobo-
rate that the time of departure from �=0.001 corresponds
roughly to the time for which Sw�t� reaches its maximum
value, as can be seen in Fig. 4. This indicates that indeed the

FIG. 5. A log-log plot of the time evolution of the number of
clusters in the layers Nc�t� for the layers at �a� Z=500, �b� Z
=5000, �c� Z=50 000, and �d� Z=500 000. In all four figures the
labels of each of the curves a, b, c, d, e, and f correspond to the
following Peclet numbers: 1.0, 0.1, 0.01, 0.001, 0.0001, and 0.0
�DLCA simulation�, respectively.

FIG. 6. The time evolution of the particle density in the layers
�layer for the depths at �a� Z=500, �b� Z=5000, �c� Z=50 000, and
�d� Z=500 000. In all four figures each of the curves is labeled with
the corresponding Peclet number.
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rarefaction of colloidal matter in the layers, starting with the
typical maximum size clusters, with the consequent slowing
down of the aggregation rate, comes after the speeding up.

IV. STRUCTURE

The addition of a gravitational field on the vertical z di-
rection in the colloidal aggregation problem, felt preferen-
tially by the big clusters, introduces some degree of aniso-
tropy in the structure of these clusters, as we will see below.
It is important to mention at this point that the clusters in
colloidal aggregation driven purely by diffusion �DLCA� are
inherently anisotropic �31–33�, in the sense that the radius of
gyration tensor has three different eigenvalues, and the aver-
age ratio of the largest to the smallest eigenvalue is different
from one. This was tested in several monodisperse models in
Refs. �31,32� and by a more realistic model of clusters dif-
fusing and aggregating in a box in Ref. �33�. However, the
diagonal components of this tensor Rgx, Rgy, and Rgz, defined
as Rgx

2 ��i=1
N �xi−xcm�2 /N, etc., when averaged over many

clusters of the same size �N�, have to coincide given that the
orientation in space of their major axes varies randomly
without a preferential direction. In this formula xi is the x
component of the position of particle i of the cluster and xcm
is the x component of the position of its center of mass. The
radius of gyration Rg of the cluster will then be given by
Rg

2=Rgx
2 +Rgy

2 +Rgz
2 . Here we would like to consider a differ-

ent type of anisotropy, induced by the addition of the gravi-
tational field, in which the average values of Rgx and Rgy over
clusters of roughly the same size are equal, up to the statis-
tical uncertainties, but different to the average value of Rgz. It
is therefore necessary to define and study some anisotropy
measures of the clusters before trying to do a radius of gy-
ration vs size, log-log analysis, in order to see if it is possible
to extract a fractal dimension from such plots. Let us define
the anisotropy measures Axz�	Rgx /Rg
 / 	Rgz /Rg
 and Ayz

�	Rgy /Rg
 / 	Rgz /Rg
, where the average values are calcu-
lated over all clusters inside segments of constant magnitude
in the logarithmic size scale N. Note that for isotropic clus-
ters, the measures Axz and Ayz should be equal to one, up to
the statistical uncertainties. After studying the Axz and Ayz
quantities, we will make plots of not only 	Rg
 vs N, but also
of 	Rgx
 vs N, 	Rgy
 vs N, and 	Rgz
 vs N, to find any regions
for which we have a power law scaling of those quantities.
Here again the averages of the different radii are made over
the same segments of constant magnitude in the logarithmic
size scale. We have found a whole variety of behaviors for
the structure of the clusters in this problem, depending on the
sedimentation strength �Pe�, the layer depth �Z�, and the re-
gion of sizes considered. Generally speaking, the four radii
�Rgx, Rgy, Rgz, and Rg� scale as a power law with N, with the
same scaling power, for the small, non-settling clusters, ex-
cept for a number of cases with a high sedimentation
strength: Pe=1.0 for all depths and Pe=0.1 for Z=500 000.
In those cases of cluster isotropy it is therefore possible to
define a cluster fractal dimension, This behavior shall be
called the quasi-DLCA regime, where the “quasi” means
that, as there is still some sweeping of even smaller clusters,

the fractal dimension is a little bit higher than the usual
DLCA df. For the large, settling clusters, we have found
cases for which the four radii again scale as a power law with
N, with the same scaling power, making it possible to define
a settling-clusters fractal dimension, a behavior that shall be
called the sweeping scaling regime. There are, however,
cases for which the scaling powers for the horizontal and
vertical directions differ, obtaining therefore self-affine set-
tling clusters. There are still some cases for which only the
mean width or the mean height scale as a power law with N,
and even further cases for which no scaling as a power law
of the four radii is obtained.

A. The sweeping scaling regime

This regime is obtained at deep layers and intermediate
Peclet numbers; the deeper the layer considered, the lower
the Pe that can be used to attain the regime. In our studies we
have found this regime for Z=500 000 with Pe=0.01, 0.001,
and 0.0001, and for Z=50 000 with Pe=0.001. In Fig. 7 we
show the case for Z=500 000 and Pe=0.001. The anisotropy
measure Ayz is first shown in Fig. 7�a�, where the error bars
in the graph correspond to the standard deviation of the plot-
ted quantity. In fact, in this paper, whenever an uncertainty is
given for a quantity, it correspond to the standard deviation
of such quantity. As we can see, Ayz stays very close to one
for all sizes up to about 10 000, which is therefore the upper
bound in this case for trying to obtain a fractal dimension
from the log-log plots of the four radii vs N. After this upper
bound, the clusters become definitely oblate. It should be
mentioned that for the anisotropy measure Axz we obtain a
quite similar plot, with the same upper bound. In Fig. 7�b� is
shown the log-log plot of the average radius Rgx vs N. After
an initial curvature, corresponding to the corrections to scal-
ing zone for small sizes, we obtain not one but two straight
lines, before the upper bound is reached. The straight line
boundaries, defined by the arrows, were obtained by the
usual method of expanding the left boundary to the left, first,
and then the right boundary to the right, or vice versa, until
the slopes produced ceased to oscillate, increasing or de-
creasing continuously. This means that there are two zones
for which we have scaling as a power law of the Rgx with N,
one defined by the arrows labeled a and the other by the
arrows labeled b. The first one corresponds to the quasi-
DLCA regime, with an inverse of the scaling power equal to
dfax=1.842±0.008, while the second one has an inverse of
the scaling power of dfbx=2.086±0.111. After the upper
bound, the Rgx does not scale with N as a power law. For the
average radius Rgy vs N a very similar plot is obtained, but
this time with dfay =1.851±0.010 and dfby =2.003±0.055.
The log-log plot of the average Rgz vs N is shown in Fig.
7�c�, where we can extract the following inverses of the scal-
ing powers dfaz=1.847±0.006 and dfbz=2.044±0.106. Note,
however, that this plot is dissimilar with those for Rgx and
Rgy in that, after the upper bound, the points deviate down-
wards and not upwards from the second straight line, due to
the oblate shape of the large clusters. Up to the statistical
uncertainties, the scaling powers for the “a” zone coincide as
well as those for the “b” zone. This means that it is therefore
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possible to obtain a fractal dimension for each zone. This is
done in Fig. 7�d�, where we now plot the average Rg vs N.
The inverses of the scaling powers provide us now with the
following fractal dimensions: dfa=1.852±0.005, which cor-
responds to the quasi-DLCA regime, and dfb=2.060±0.049,
corresponding to what we have called the “sweeping scaling

regime” �21,29�. Note that in the graph it looks like if we can
continue the second straight line for about half a decade
more. This is really an artifact because, as we saw, the points
after the upper bound deviate upwards for Rgx and Rgy, while
the deviation is downwards for Rgz, making the Rg have al-
most no deviation, due to the equation Rg

2=Rgx
2 +Rgy

2 +Rgz
2 .

As mentioned, for the same Z=500 000 layer we have
also found a sweeping scaling regime for Pe=0.0001 �dfb

=2.170±0.102� and for Pe=0.01 �dfb=2.049±0.013�. For
the layer at Z=50 000 there is only a sweeping scaling re-
gime for Pe=0.001 �dfb=1.996±0.048�. For Pe=0.0001 and
this Z=50 000 layer, the clusters grow mainly by diffusion
and aggregation at contact; therefore, when they are big
enough to undergo a substantial sedimentation, they cannot
traverse enough distance to do an appreciable sweeping of
the small ones, when they reach the layer, and we are left
only with quasi-DLCA clusters. It therefore seems that in
order to obtain the sweeping scaling regime for lower Peclet
numbers, we would need to consider bigger depths. For the
shallower layers at Z=5000 and Z=500 we did not find a
sweeping scaling regime for all the Peclet numbers studied.

B. A self-affine regime

We have found a self-affine regime for the case Z=5000
and Pe=0.01, shown in Fig. 8. In Fig. 8�a� we plot the an-
isotropy measure, this time Axz, with a very similar plot for
Ayz. In the figure we can see that Axz remains very close to
one up to values of N�200. After that, the clusters become a
little bit elongated by noting that the Axz diminishes from one
by a few percent; however, it starts to increase again and
crosses one at about N�3000, the clusters becoming defi-
nitely oblate after that point. Therefore, the upper bound in
size for possible isotropic scaling is 200 in this case. In Fig.
8�b� we plot the average Rgx vs size, where we can see that,
after the corrections to scaling curvature, there are two
straight lines, defined by the arrows labeled “a” and “b.” The
inverses of the scaling powers are this time dfax
=1.824±0.014 and dfbx=2.064±0.048. There is a very simi-
lar plot for Rgy vs N, but now with dfay =1.837±0.015 and
dfby =2.099±0.030. In Fig. 8�c� is shown the plot for the
average Rgz vs size, again with two straight lines after the
corrections to scaling zone, this time with dfaz
=1.819±0.015 and dfbz=1.901±0.015. We can note that the
scaling powers in the “a” zone coincide, up to the statistical
uncertainties. However, although the dfbx and dfby inverse
scaling powers are quite similar, there is no way that they
can be equated to dfbz, which means that the mean width and
mean height scale with size as a power law, but with differ-
ent scaling powers. This results therefore in self-affine clus-
ters, with no possibility to define a fractal dimension for
them. To check this, in Fig. 8�d� we plot the whole Rg vs N,
where we obtain now one single straight line in the “a” zone
and a continuous curvature afterwards. The inverse of the
scaling power in the “a” zone is now dfax=1.842±0.014, that
can be defined as the fractal dimension of the clusters in this
zone, which corresponds to the quasi-DLCA regime. As a
final comment, the zone in which the clusters are self-affine
corresponds to that zone with a somewhat elongated shape
obtained in the plot of Axz vs N.

FIG. 7. All four figures correspond to the layer at Z=500 000
and Pe=0.001. �a� A plot of the anisotropy measure �see the text�
Ayz vs the size. �b� A plot of Rgx vs the size. �c� A plot of Rgz vs the
size. �d� A plot of Rg vs the size. In �b�, �c�, and �d� the plotted radii
are averages over all clusters inside segments of constant magnitude
in the logarithmic size scale N.
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C. Cases for scaling of the mean height
or the mean width only

We have found cases for which the mean height scales as
a power law with N while the mean width does not and vice
versa. The cases of scaling of the mean height were for Pe
=0.1 with Z=50 000 and 5000, while those of scaling of the
mean width were for Pe=0.01 with Z=50 000, and for Pe

=0.1 with Z=500. In Fig. 9 we show the case Pe=0.1 with
Z=50 000. In Fig. 9�a� we can see that the anisotropy mea-
sure Axz decreases very soon from one, as in all cases with a
high Peclet number as we will see below, reaching values
around 0.8, which indicates somewhat elongated clusters.
Afterwards it starts increasing very rapidly, crossing one and
reaching values close to 3.0, which indicates this time very
oblate clusters. A very similar plot was found for Ayz. In
these cases of high Pe’s, the quasi-DLCA regime disappears,
hidden in the curvature of the zone of the corrections to

FIG. 8. All four figures correspond to the layer at Z=5000 and
Pe=0.01. �a� A plot of the anisotropy measure Axz vs the size. �b� A
plot of Rgx vs the size. �c� A plot of Rgz vs the size. �d� A plot of Rg

vs the size.

FIG. 9. All four figures correspond to the layer at Z=50 000 and
Pe=0.1. �a� A plot of the anisotropy measure Axz vs the size. �b� A
plot of Rgy vs the size. �c� A plot of Rgz vs the size. �d� A plot of Rg

vs the size.
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scaling. However, for the settling clusters we can see that
there is no scaling as a power law of the average Rgy vs size,
as shown in Fig. 9�b�. The graph is all curved, with no pos-
sibility to define a straight line. A quite similar plot is ob-
tained for the average Rgx vs size. Notwithstanding this, in
Fig. 9�c� we can clearly see a zone of the settling clusters
with a well defined straight line, which indicates scaling as a
power law of the average Rgz vs N. The inverse of the scaling
power was found as dfbz=1.927±0.018, above the DLCA
fractal dimension. For the average of the whole Rg vs N we
see again a curved graph, with no possibility to define a
fractal dimension, as shown in Fig. 9�d�. As a final comment,
we observe that the zone of scaling as a power law of Rgz vs
N is in the region of elongated clusters shown in Fig. 9�a�.

D. Cases for a quasi-DLCA regime only

If the Peclet number is very low, the clusters grow mainly
by diffusion and sticking at contact. When they have grown
large enough to drift downwards appreciably, they will re-
main with the same compacticity, unless they have the pos-
sibility to traverse enough distance in order to do a substan-
tial sweeping of smaller clusters, which will increase its
compacticity. However, if they do not traverse such dis-
tances, they will stay with almost the same DLCA fractal
dimension, perhaps somewhat increased by the little sweep-
ing they performed. These are the cases for which we have a
quasi-DLCA regime only. As it was said, it is obtained with
low Pe’s; however, the shallower the depth, the higher the
value of Pe that can be used to attain the regime. We have
found a quasi-DLCA regime only for Z=50 000 with Pe
=0.0001; for Z=5000 with Pe=0.0001 and 0.001; and for
Z=500 with Pe=0.0001, 0.001, and 0.01. In Fig. 10 we are
showing the case Z=500 with the intermediate value of Pe
=0.001. In Fig. 10�a� we can see that the anisotropy measure
Ayz is practically one, taken into account the statistical un-
certainties, in the whole range of sizes, with a similar plot for
Axz. In Fig. 10�b� we plot the average Rgx vs N, where we can
see a well defined straight line between the arrows labeled
“a.” We have neglected the last four points corresponding to
sizes for which we have a few clusters and hence the statis-
tical uncertainties are higher, in order to have a better value
for the scaling exponent. The inverse of the scaling power is
dfax=1.847±0.007. We have a similar plot for the average
Rgy vs size, this time with dfay =1.840±0.011. The average
Rgz vs N is shown in Fig. 10�c�, where we can see again a
well defined straight line, now with dfaz=1.839±0.008. Fi-
nally, in Fig. 10�d� we show the whole average Rg vs N,
where the straight line produced the following value dfa
=1.848±0.005. As the four inverses of the scaling powers
are practically the same, up to the statistical uncertainties, we
can say that for this case the cluster fractal dimension is
dfa=1.848±0.005, which is a little bit higher than the DLCA
fractal dimension for this concentration �27,28�.

E. The high Peclet number cases

We have found another behavior for which the clusters
start to become immediately elongated along the z direction,
the anisotropy measures Axz and Ayz going down very fast,

until they reach a minimum. Afterwards, they start to in-
crease, crossing one at a certain size and ending up with
oblate clusters. This occurs generally for high Peclet num-
bers; in fact, we have found this behavior with Pe=1 for all
depths, and with Pe=0.1 for Z=500 000. In these cases, the
log-log plots of the average radii Rgx, Rgy, Rgz, and Rg are all
curved, with no possibility to define a straight line. In Fig. 11

FIG. 10. All four figures correspond to the layer at Z=500 and
Pe=0.001. �a� A plot of the anisotropy measure Ayz vs the size. �b�
A plot of Rgx vs the size. �c� A plot of Rgz vs the size. �d� A plot of
Rg vs the size.
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is shown the case for Z=50 000 and Pe=1. As usual, we start
first in Fig. 11�a� with one of the anisotropy measures, in this
case Ayz vs N. As can be seen in the figure, Ayz goes imme-
diately down, reaching values below 0.6 at the minimum,
and then starts to increase crossing one at the size of around
2000, the clusters becoming oblate afterwards. The plot of
Axz behaves in a very similar way. The plot of the average
Rgx vs N, shown in Fig. 11�b�, is all curved as mentioned;
therefore, there is no scaling as a power law of this quantity
with N. Again, the behavior of the average Rgy vs N is quite
similar to Fig. 11�b�. In Fig. 11�c� we plot the average Rgz vs
N, where we can see this time a continuous curvature, with

no inflexion points. The absence of a straight line implies
again that there is no scaling as a power law of Rgz with N.
Finally, in Fig. 11�d� we are showing the plot of the average
Rg vs N, which looks more straight than the previous two
figures. Once more, this is an artifact coming from the fact
that the average width goes up from a possible straight line,
for large cluster sizes, while the average height goes down,
making the total Rg to “almost” lie on a straight line. How-
ever, a closer inspection of the points and using the method
of the moving boundaries, reveals the absence of a straight
line in this figure also. As a conclusion, no fractal dimension
can be defined in these cases of high Pe’s.

V. CONCLUSIONS

As it was seen, it is possible to devise an algorithm to
study the colloidal aggregation problem coupled with sedi-
mentation, that can provide us with the average aggregation
quantities at a fixed depth in the aggregating prism. The al-
gorithm can be extended to the continuum, a work that is in
progress. All this is particularly useful when studying big
depths because, as we saw, it is for these depths that we can
obtain the interesting case of a “sweeping scaling regime,”
for which we have self-similar large aggregates with a fractal
dimension appreciably higher than the df of DLCA clusters.
Otherwise, the task of performing many simulations in
prisms of a big height, and obtaining the averages of the
aggregation quantities over all the clusters, inside the layers
at a fixed depth in the prisms of all the simulations, would
become nearly hopeless. An interesting result coming from
our simulations is that the aggregation quantities no longer
depend on the height H of any confinement prism, but only
on the depth Z at which they are measured, as long as H
�Z+� /2 of course.

The higher value of the df for the sweeping scaling re-
gime comes, in our case, from the sweeping of the small
clusters by the large settling ones, which in turn occlude the
holes and cavities of these large aggregates, increasing in this
way their compacticity. Note that we cannot invoke a restruc-
turing mechanism for the large values of the df’s, because it
is not built-in in our model. Notice however that we found a
lower fractal dimension ��2.05� for the settling clusters than
the one found by the experimentalists ��2.2� �11�. It is con-
ceivable that also a restructuring of the large clusters would
make them still more compact, helping to push its df up to
about 2.2. However, some other mechanisms could be
present, such as a sticking probability lower than 1 �which
would increase the df�, the breakage of the clusters above a
certain size �which may also increase their df�, or the inclu-
sion of the hydrodynamic interactions �whose effect on the df
is unclear�. As shown recently with the algorithm for which
the lattice in the shape of a cube represented the whole prism
�21�, we can have a higher df for the settling clusters if we
increase the concentration �df �2.2 for �=0.01�. We, how-
ever, preferred to use a concentration closer to the experi-
mental one �9,11� to compare the results. An analysis of the
concentration effects with the present, more correct algo-

FIG. 11. All four figures correspond to the layer at Z=50 000
and Pe=1.0. �a� A plot of the anisotropy measure Ayz vs the size. �b�
A plot of Rgx vs the size. �c� A plot of Rgz vs the size. �d� A plot of
Rg vs the size.
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rithm, in which the variations with depth are taken into ac-
count, should be done in the future.

The present problem is richer than the colloidal aggrega-
tion problem driven purely by diffusion in that �i� there are
cases for which the average width and average height of the
large settling clusters scale again as a power law with N, but
with different scaling powers, obtaining in this case self-
affine, anisotropic clusters. �ii� There are still some cases for
which only the mean width or the mean height of the settling
clusters scale as a power law with N, leading again to aniso-
tropic clusters. �iii� There are further cases of high sedimen-
tation strengths, for which neither the mean width nor the
mean height of the settling clusters scale as a power law with
N, which provides us also with anisotropic clusters. Finally,
�iv� there are cases of very shallow depths and/or not so
shallow depths but with low sedimentation strengths, for
which a settling clusters regime disappears, leaving over
only a quasi-DLCA regime. It should be mentioned that the
anisotropies we found in cases �i�, �ii�, and �iii� could be
blurred by the fragmentation of the aggregates in the experi-
mental system, being perhaps valid up to the point where
cluster breakage starts to occur. Although in cases �i�, �ii�,
and �iii� we cannot define a clusters fractal dimension, we
feel that they should be more “compact,” in a still undefined
way, than the DLCA clusters. This is because they are set-
tling clusters that catch up with the smaller clusters below,
which should occlude their holes and cavities, increasing in
this way their compacticity.

We have confirmed the acceleration of the aggregation
rate as compared to DLCA, due to the increasing pace at

which the settling clusters drift downwards, forcing in this
way an increase of the hitting rate. This speeding up of the
aggregation rate is followed by a slow down when the “typi-
cal maximum size” clusters start leaving the layer, diminish-
ing in this way the hitting rate. Afterwards, the layer deplen-
ishes of smaller and smaller clusters, after a sufficiently long
time.

As a final comment, we would like to point out the simi-
larities of the present aggregation problem with the problem
of droplet coalescence, of liquid droplets dispersed in an-
other inmiscible liquid. Both theoretical and experimental
studies �34,35� obtain a droplet size distribution that, at a
given depth, initially shifts toward larger drop sizes due to
coalescence, and then shifts back toward smaller drop sizes
due to the larger drops settling or rising out of the dispersion
because of sedimentation or buoyancy. The main difference
with the present aggregation problem is the nonfractality of
the aggregating �coalescing� objects. The theoretical descrip-
tions of the drop coalescence process �34� are mainly based
on population dynamics equations applied to the drop sizes,
discretized into N discrete categories. It would be of interest
to perform simulations of this process with a modified ver-
sion of the present algorithm.
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